Atomistic simulations of long-range strain and spatial asymmetry molecular states of seven quantum dots
نویسندگان
چکیده
Coherent coupling and formation of molecular orbitals in vertically coupled quantum-dot molecules is studied for a seven-dot InAs/GaAs system. The electron states are computed using a nanoelectronic modelling tool NEMO-3D. The tool optimizes atomic positions in the sample with up to 64 million atoms in the frame of the atomistic VFF model. The resulting optimal interatomic distances are then used to formulate the 20-band sp3d5s* tight-binding Hamiltonian defined on a subdomain large enough to guarantee a correct treatment of confined orbitals. It is found that in the absence of strain (VFF optimization turned off), a clear and highly symmetric miniband structure of the seven-dot orbitals is formed. It maintains a high degree of symmetry even if the dots are taken to be realistically non-identical, where the dot size increases in the growth direction. However, the inclusion of strain breaks this symmetry completely. The simulations demonstrate the important interplay of strain engineering and size engineering in the design of quantum dot stacks.
منابع مشابه
Wavelength and polarization variations of InAs/GaAs quantum dots emission at liquid Helium temperature via microphotoluminescence spectroscopy
In this paper, we investigate variation of the wavelength, intensity and polarization of the self-assembled InAs/GaAs quantum dots emission by microphotoluminescence spectroscopy at the liquid helium temperature. The microcavity wafer sample is grown by molecular beam epitaxy (MBE) and chemically etched into the micropillar structure (with elliptical cross section - long and short axis 2µm×1.5µ...
متن کاملWavelength and polarization variations of InAs/GaAs quantum dots emission at liquid Helium temperature via microphotoluminescence spectroscopy
In this paper, we investigate variation of the wavelength, intensity and polarization of the self-assembled InAs/GaAs quantum dots emission by microphotoluminescence spectroscopy at the liquid helium temperature. The microcavity wafer sample is grown by molecular beam epitaxy (MBE) and chemically etched into the micropillar structure (with elliptical cross section - long and short axis 2µm×1.5µ...
متن کاملSymmetry Breaking and Fine Structure Splitting in Zincblende Quantum Dots: Atomistic Simulations of LongRange Strain and Piezoelectric Field
Electrons and holes captured in self-assembled quantum dots (QDs) are subject to symmetry breaking that cannot be represented in with continuum material representations. Atomistic calculations reveal symmetry lowering due to effects of strain and piezo-electric fields. These effects are fundamentally based on the crystal topology in the quantum dots. This work studies these two competing effect...
متن کاملModelling Ge/Si quantum dots using finite element analysis and atomistic simulation
Finite Element Analysis (FEA) and atomistic simulations are used to model Ge/Si quantum dots. The three dimensional non-uniform composition profile in Ge(Si)/Si(001) quantum dots is calculated using atomistic modelling. The results are compared to experimental data from the literature. FEA is used to model the contact angle dependence of the strain energy of the QD. An equation is fitted to the...
متن کاملMultiscale Modeling of a Quantum Dot Heterostructure
A multiscale approach was adopted for the calculation of confined states in self-assembled semiconductor quantum dots (QDs). While results close to experimental data have been obtained with a combination of atomistic strain and tight-binding (TB) electronic structure description for the confined quantum states in the QD, the TB calculation requires substantial computational resources. To allevi...
متن کامل